antibacterial

Amine Functionalized Graphene Quantum Dots as a Smart Nano Antibacterial Agent

Published on: 13th December, 2024

Conventional antibiotics are resisted by bacteria at an increasing rate, prompting studies into the development of alternate antibiotic agents. This work demonstrates the fabrication and characterization of amine functionalized graphene quantum dots (af-GQDs) with starting materials of graphene oxide, ammonia, and hydrogen peroxide by chemical oxidation and hydrothermal methods. The synthesized af-GQDs were characterized using analytical techniques such as UV-vis, fluorescence, FTIR, Raman spectroscopy, and morphological studies through TEM. TEM images showed that af-GQDs have smooth surface morphology with porous in nature and are spherical in shape with particle size less than 20 nm. The prepared af-GQDs show a quantum yield of 26.32%. A growth inhibition test was performed on E. coli and S. aureus for the prepared af-GQDs at different increasing concentrations. The minimum inhibitory concentration for the prepared af-GQDs on E. coli was found to be 55 μg/mL and for S. aureus was found to be 35 μg/mL. Percentage cell viability studies were performed on HeLa and Jukart cells for 24 hours at different concentrations. Both cells showed maximum cell viability percentage at the initial concentration. At higher concentrations, the cell viability is decreased for both cells but the Jukart cells show a minimum percentage of cell viability at higher concentrations than the HeLa cells.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Green Synthesis of Citrus sinensis Peel (Orange Peel) Extract Silver Nanoparticle and its Various Pharmacological Activities

Published on: 28th March, 2025

Citrus sinensis is a rich source of bioactive compounds  and has attracted attention due to its medicinal benefits. Historically regarded as agricultural waste, orange peel is rich in flavonoids, polyphenols, tannins, and essential oils with antibacterial, anti-inflammatory, and antioxidant qualities. The phytochemicals in Citrus sinensis peel were used as natural reducing and stabilizing agents in the green synthesis method used in this work to create silver nanoparticles (AgNPs). This method is an environmentally friendly alternative to conventional nanoparticle production, eliminating the need for hazardous chemicals. Based on the study’s results, green-synthesized silver nanoparticles derived from Citrus sinensis peel extract offer a sustainable and biocompatible substitute for biomedical applications. The pharmaceutical and healthcare industries may find therapeutic uses for them due to their exceptional antibacterial, antioxidant, and anticancer properties.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

A-Z Journals

Help ?

HSPI: We're glad you're here. Please click "create a new Query" if you are a new visitor to our website and need further information from us.

If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click "take me to my Query."