CRISPR technology has presented a path forward for genomic engineering and gene modification. The framework for the use of CRISPR technology to manipulate the human genome is of great interest and the form of its development and application has excited the researchers and biotech communities as the number of publications citing CRISPR gene targeting system has rose predominantly as indexed in PubMed. From a technical standpoint of view, most of us think that this would be relatively straightforward process, but technical feasibility is never the only consideration in doing experiments. Much of the discussion about CRISPR engineering has revolved mostly around its ability for treating disease or editing the genes of human embryos. In the real sense, what the biologists desire about CRISPR is its specificity: the ability to target and determine particular DNA sequences in the genome circuit.
Since the discovery of the dystrophin gene (DMD gene) thirty years ago, several therapeutic approaches have been investigated to treat Duchenne muscular dystrophy (DMD). This includes cell therapy, exon jumping, exonic knockout, and the CinDel method. In this article, we present the challenges of developping a treatment for DMD and the advances of these various approaches. We included the new CRISPR-Cas9 system, which permits not only major progress in the development of new treatments based on genome editing but also the production of new animal models.
Ailment repairing regiments has turn out to be arduous, despite a plenty of understanding and knowledge acquired in the past relating to the molecular underpinnings of Alzheimer’s disease (AD. Umpteen clinical experiments targeting the fabrication and accumulation have been turned fruitless to fit potency standards. The tests aiming beta-amyloid hypothesis also turned futile making it exigent for further handling tactics. The new emanation of a comparably candid, economical, and punctilious system known as gene editing have showed light in path of cure for AD by CRISPR/Cas9 gene editing. Being a straight approach this procedure has already shown assurance in other neurological disorders too such as Huntington’s disease. This review standpoint the immanent service of CRISPR/Cas9 as a remedial option for AD by aiming on specific genes inclusive of those that induce early-onset AD, as well as those that are substantial risk components for late-onset AD such as the apolipoprotein E4 (APOE4) gene.
Clustered regularly interspaced short palindromic repeat (CRISPR), a potent gene-editing tool was found in 2012. CRISPR is a genetic engineering technique that enables genome editing in living creatures and is based on the bacterial CRISPR-Cas9 antiviral defense mechanism. It is simpler, less expensive, and more accurate than previous gene editing techniques. It also has a wide range of valuable uses, including improving crops and treating genetic diseases. Plant science has benefited more from the CRISPR/Cas9 editing technique than medical science. CRISPR/Cas9 has been used in a range of crop-related research and development domains, including disease resistance, plant development, abiotic tolerance, morphological development, secondary metabolism, and fiber creation, as a well-developed cutting-edge biotechnology technique. This paper summarized the role of the CRISPR-CAS9 tool in modern agricultural science.
Sheena P Kochumon and Cherupally Krishnan Krishnan Nair*
Published on: 29th March, 2024
Spinal muscular atrophy is an autosomal recessive neuromuscular disorder characterized by progressive muscle weakness and atrophy. It is one of the most common single-gene disorders with an incidence rate of approximately 1 in 10,000 live births. The clinical manifestations are progressive hypotonia and muscle weakness due to the degeneration of alpha neurons in the anterior horn cells of the spinal cord and motor nuclei in the lower brain stem. Depending on the severity of the symptoms, SMA has five subtypes. Supportive measures can be offered for respiratory, gastrointestinal, and musculoskeletal complications. Carrier testing for all couples is recommended and this can be done by Multiplex Ligation-dependent Probe Amplification (MLPA). Prenatal diagnosis can be offered to carrier couples. Therapies must be given within the newborn period for maximum benefit and before the loss of motor neurons. It is achieved by identifying the SMA babies through Newborn screening. Several new FDA-approved drugs can reduce the progression of symptoms in SMA. However, they cannot offer a definite cure. Clinical follow-up and Neurological assessment demonstrate that SMA children can attain developmental milestones after receiving treatment, which is never normally attained in untreated cases. In utero SMA treatment with Zolgensma would enhance the survival rate and favorable neurological outcomes in the future. Base editing and Gene editing with CRISPR-Cas technologies to target the mutations and restore functional and stable SMN protein levels are the future hopes for a permanent cure of SMA.
Artificial Intelligence (AI) combined with Synthetic Biology has the potential to change the way we approach medicine, agriculture, and manufacturing. AI automates tasks, optimizes experimental designs, and predicts biological behaviours, resulting in more efficient design and engineering of biological systems. However, there are challenges such as data limitations, interpretability issues, and ethical considerations like biosafety and biosecurity concerns that need to be addressed. AI can be used to analyze vast amounts of data and identify patterns. This has led to successful applications of AI in high-throughput screening and biomanufacturing, which can drive innovation and address critical challenges. AI-powered closed-loop systems for real-time monitoring and control of biological processes also show promise in providing real-time feedback and optimizing systems on the fly. Despite these advancements, it's important to consider ethical implications to ensure the responsible development and application of AI in synthetic biology. Proper consideration of challenges and ethical considerations can help leverage the power of AI to drive innovation and tackle pressing societal challenges. Overall, the potential of AI in synthetic biology is significant. By addressing challenges and ethical considerations, we can use them effectively to solve pressing problems.
The editorial process was quickly done. The galley proof was sent within a week after being accepted for publication.
The editorial team was very helpful and responded promptly.
India
Rohit Kulshrestha
I would like to thank this journal for publishing my Research Article. Something I really appreciate about this journal is, they did not take much time from the day of Submission to the publishing date. Looking forward to have more publications in future.
Ayush Chandra
I hope to ability to make some new investigation and publish in Your Company in future.
Artur Stopyra
“The choice to submit the forensic case study to the Journal of Addiction Therapy and Research was dictated by the match between the content and the potential readership. The publication process proved to be expedient and we were provided with constructive feedback from reviewers. The final article layout is attractive and conforms to standards. All-in-all, it has been a rewarding process.”
Ph.D, Boston University Department of Communication Sciences and Disorders and Knowledge Research Institute, Inc., 2131 Reflection Bay Drive, Arlington, Texas 76013, USA
Elisabeth H. Wiig
I think that Heighpubs very good. You are very helpful. Thank you for everything.
Ana Ribeiro
''Co-operation of Archives of Surgery and Clinical Research journal is appreciable. I'm impressed at the promptness of the publishing staff and the professionalism displayed. Thank you very much for your support, help and encouragement.''
Anıl Gokce
During the process your positive communication, prompt feedback and professional approach is very highly appreciated.
We would like to thank you very much for your support.
Can Vuran
Dear colleagues! I am satisfied with our cooperation with you. Your service is at a high level. I hope for a future relationship. Let me know if I can get a paper version of the magazine with my articles from you. I see them on the Internet.
Aksenov V.V
I really liked the ease of submitting my manuscript in the HSPI journal. Further, the peer review was timely completed and I was communicated the final decision on my manuscript within 10 days of submission which is really appreciable. I strongly recommend all the scientists and researchers to submit their work in this journal”
Abu Bashar
Service and process were excellent as was the “look” of the article when published.
HSPI: We're glad you're here. Please click "create a new Query" if you are a new visitor to our website and need further information from us.
If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click "take me to my Query."